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Abstract—This letter describes the synthesis of (±) cis-substituted cyclohexenyl and cyclohexanyl nucleosides. The synthesis of cis
isomers was successfully achieved by the use of two consecutive Mitsunobu reactions involving an inversion of configuration and
a sugar–base condensation. © 2001 Elsevier Science Ltd. All rights reserved.

The development of new modified nucleosides as antivi-
ral agents has remained a very active field of research.
Despite the fact that the carbocyclic nucleosides have
been extensively studied, few efforts have been directed
toward the synthesis of six-membered carbocyclic ana-
logues.1 However, two recent publications describe the
potent antiviral activity of such compounds.2

The major reasons which highlight the importance of
six-membered carbocyclic nucleosides are:

– the protection from resistance to hydrolysis since
glycosidic bond cleavage is a frequently encountered
degradative pathway of nucleoside antivirals, particu-
larly for the 2�,3�-dideoxynucleosides;3

– the cyclohexene ring on nucleosides has been
shown to be a (bio)isostere of the saturated furanose
ring.4

In this article, we describe the syntheses of several (±)
cis-substituted cyclohexenyl and cyclohexanyl
nucleosides (I and II, Fig. 1), starting from the com-
mercially available precursor 1 (racemic 3-cyclohexene-
1-carboxylic acid). The known allylic alcohol derivative
7 (Scheme 1) is a requisite for the Mitsunobu coupling
reaction of various nucleoside bases.5 Iodolactoniza-
tion, followed by elimination of the iodide 2 using
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), afforded the
unsaturated lactone 3 in quantitative yield.6 Reduction
of 3 with lithium aluminium hydride, followed by the

selective protection of the primary alcohol function of
the analogue 4, provided 5 in 58% yield from com-
pound 3. The preparation of the trans derivative 6 was
accomplished using a Mitsunobu-type reaction on the
allylic alcohol 5. Thus, the introduction of a benzoyl
protective group allowed an inversion of configuration.7

The allylic alcohol 5 was reacted with benzoic acid in
the presence of diethyl azodicarboxylate (DEAD) and
triphenylphosphine (PPh3) in dry THF to give 6. Alka-
line hydrolysis of 6 afforded in 93% yield the trans
allylic alcohol 7.8

The corresponding cis-cyclohexenyl nucleosides were
obtained by the use of a second Mitsunobu-type reac-
tion between the allylic alcohol 7 and pyrimidine and
purine bases.9 The synthesis of the cytosin-1-yl (10),
thymin-1-yl (13), adenin-9-yl (17) and guanin-9-yl (19)
derivatives are illustrated in Schemes 2 and 3.

Condensation of the common intermediate, allylic alco-
hol 7, respectively, with N4-benzoylcytosine and N3-
benzoylthymine10 in the presence of DEAD and
triphenylphosphine in THF gave the cis racemic
cytosine and thymine derivatives 8 and 11 in 55 and

Figure 1.
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Scheme 1. Reagents and conditions : (a) Aq. NaHCO3, then aq. KI/I2; (b) DBU, toluene, reflux, 10 h; (c) AlLiH4, THF, rt, 2 h;
(d) TBDMSCl, imidazole, DMF, rt, 5 h; (e) DEAD, PPh3, BzOH, THF, rt, 5 h; (f) NH3/MeOH, NaOH 2N, rt, 3 h.

45% yield (Scheme 2).11 Compounds 8 and 11 were
converted to compounds 9 and 12 by treatment with
TBAF in THF followed by a saturated ammonia solu-
tion in MeOH. The overall yields starting from 8 and
11 were 34 and 36%, respectively. Hydrogenation of
compounds 9 and 12 in EtOAc over 10% palladium on
carbon gave the saturated cytosine derivative 10 and
the saturated thymine derivative 13 in 56 and 77%
yield, respectively.12,13

Using the same conditions, the Mitsunobu-type reac-
tion on the allylic alcohol 7 with 6-chloropurine and

2-amino-6-chloropurine gave the protected 6-chloro-
purines derivatives 14 and 18 in 39 and 40% yield,
respectively (Scheme 3).14

Building of the adenine ring from 14 was accomplished
by treatment with methanolic ammonia in a sealed
reaction vessel for 1 day to give 15 in 52% yield. The
material was converted to pure adenine cyclohexene
nucleoside 16 by treatment with TBAF in THF. The
2-amino-6-chloropurine derivative 18 was converted to
the guanine cyclohexene nucleoside 19 by treatment
with TFA–H2O (3:1). Under these conditions, the

Scheme 2. Reagents and conditions : (a) N4-Benzoylcytosine, DEAD, PPh3, THF rt, 18 h; (b) N3-benzoylthymine, DEAD, PPh3,
THF, rt, 18 h; (c) TBAF, THF, 3 h, then satd NH3/MeOH, 20 h; (d) 10% Pd/C, H2, EtOAc, 24 h.



TBDMSO OH

(±)-trans 7

TBDMSO N

(±)-cis 14

(±)-cis 15

(±)-cis 16

(±)-cis 18

(±)-cis 19

a
39%

b
40%

c 52%

e 30%

d 36%

f

N

N

N

Cl

TBDMSO N

N

N

N

NH2

HO N

N

N

N

NH2

HO N

N

N

N

NH2

f 67%

(±)-cis 17

TBDMSO N

N

N

N

Cl

NH2

HO N

N

N

NH

O

NH2

HO N

N

N

NH

O

NH2

H3'

H2'
Base

HO

H1'

NOE effects

K. Barral et al. / Tetrahedron Letters 43 (2002) 81–84 83

Scheme 3. Reagents and conditions : (a) 6-Chloropurine, DEAD, PPh3, THF, rt, 18 h; (b) 2-amino-6-chloropurine, DEAD, PPh3,
dioxane, rt, 48 h; (c) NH3/MeOH, 80°C, 24 h; (d) TFA/H2O (3/1), rt, 72 h; (e) TBAF, THF, 4 h; (f) 10% Pd/C, H2, EtOH, rt,
24 h.

Figure 2.

TBDMS protecting group was simultaneously removed
with an overall yield of 36%. Hydrogenation of com-
pound 16 over palladium on activated carbon gave the
saturated adenine derivative 17 in 67% yield. However,
hydrogenation in MeOH of compound 19 led to
decomposition and the use of EtOAc was inappropriate
since 19 was unsoluble in this solvent. Structural assign-
ments of the products 9, 10, 12, 13, 16, 17 and 19 were
based on 1D and 2D 1H NMR studies. Ring conforma-
tion and relative stereochemistry of the base and the
3�-hydroxymethyl group were determined by examina-
tion of 2D 1H–1H NOESY spectra. In all cases, strong
NOE interactions were observed between H1�, H2� and
H3� suggesting the cis configuration (H1�ax–H3�ax) of the
nucleosides (Fig. 2).

Antiviral activity of these new series of nucleosides will
be reported in due course.
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